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We have simulated the dynamics of a butane molecule and computed the time evolution of two sets of
collective variables: �a� internal variables �stretchings, bendings, and dihedral angle� and �b� variables derived
from a principal component analysis �PCA�. We have characterized each collective variable by a coherence
time, the time needed to develop its chaotic behavior. The coherence times diminish significantly when the
temperature is raised into and above the range where conformational transitions of the dihedral angle set in.
Below this transition region the coherence times of some variables reach hundreds of picoseconds �principal
components� or even nanoseconds �internal variables�; moreover, there are large differences among variables,
as their coherence time can be much larger or much smaller than the Lyapunov time of the whole molecule.
This result reflects the prediction of Nekhoroshev’s theorem. Crossing the transition region, the coherence
times of both sets of variables drop to few picoseconds, and the differences among variables diminish. Still, the
coordinates and velocities characterized by the largest fluctuations in the PCA appear to be also the most
coherent ones, below and above the transition region.
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I. INTRODUCTION

The very first study of a condensed-matter system that
showed the �unexpected� existence of an ordered dynamical
regime is the well-known computer simulation by Fermi,
Pasta, and Ulam �FPU� back in 1953 �1�. Since then, many
papers have been published in this field, dealing with the
chaotic behavior of model or realistic systems. Ordered be-
havior has been found mostly in systems with few degrees of
freedom �DOFs�, while larger systems have often been found
to be chaotic. The theoretical explanation of the appearance
of ordered motions in nonlinear systems begun at the same
time—but independently—as the FPU experiment and is
known as the Kolmogorov, Arnold, and Moser �KAM� theo-
rem �2�. This theorem explained why a nonlinear system may
be endowed with regular motions, provided the nonlinearity
is not too large; this property was attributed to the system as
a whole. A later theorem by Nekhoroshev �3� foresaw the
possibility that within a chaotic system different DOFs may
exhibit their chaotic behavior on very different time scales. A
computer simulation that yielded evidence of the type of
dynamics foreseen by Nekhoroshev �3� was done on a lattice
of particles interacting via a Lennard-Jones potential �4,5�;
there, at low energy, the dynamics showed a mixed pattern,
as different normal modes became chaotic over a time that
could be very different �by several orders of magnitude� for
normal modes of different frequency. This phenomenology
stresses the necessity—when analyzing the dynamics of a
nonlinear system—of applying adequate diagnostic tools to

study the behavior of individual DOFs besides the tools usu-
ally implemented to study the behavior of the system as a
whole �Lyapunov spectrum, spectral entropy, and stochastic
threshold�. In Sec. II we review the development of some
diagnostic tools already used in studying individual DOFs in
condensed-matter systems and explain the choice made for
the present study. In Sec. III we describe how to measure a
coherence time for each DOF. In Sec. IV we describe the
model of butane used in our computer experiment. In Sec. V
we perform a standard analysis of the system by computing
the Lyapunov spectrum. In Sec. VI we apply our diagnostic
tools to the dynamical behavior of the internal variables of
the butane molecule. In Sec. VII we discuss a different set of
collective variables, those derived from a principal compo-
nent analysis �PCA� of the system’s trajectory in the phase
space, and in Sec. VIII we analyze the coherence of the
variables defined in the PCA. In Sec. IX we discuss our
results and compare them with previous work done on the
same system. In Sec. X we draw the conclusions.

II. COHERENCE OF INDIVIDUAL DEGREES
OF FREEDOM

A chaotic system is usually characterized by a fast expo-
nential rate of divergence of trajectories beginning at near
points in the phase space. We call coherence the inverse
property of chaoticity, namely, a slow divergence of near
trajectories. In this section we analyze this property.

Let us briefly recall the theory of the Lyapunov expo-
nents. Let Rm be a differentiable, m-dimensional, compact,
and connected Riemannian manifold of class C2. If x�Rm,
we denote by TRm the tangent space to Rm in x. Let
�t :Rm→Rm be a flow generated by the set of differential
equations ẋ= f�x�; the tangent mapping of TRx

m onto TR
�x

t
m ,

induced by the diffeomorfism �t, will be denoted by d�x
t .
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Oseledec �6� �see also Refs. �7� and �8�� proved that an
orthonormal base �ei� exists in TRx

m, such that

lim
t→�

1

t
ln�d�x

t �ei�� = ��x,ei� = �i�x� .

The numbers �i�x� are called the Lyapunov characteristic
exponents and give a measure of the rate of divergence in the
phase space of initially nearby trajectories. The �i�x� are not
necessarily distinct; we denote by �� j�1�j�s the distinct val-
ues taken by ��i�x��1�i�m and by kj�x� the multiplicity of
� j�x�. We also let �i�� j if i� j. Then a theorem �7� states
that there exist linear subspaces H1 , . . . ,Hs, s=s�x� such that
TRx

m=H1 � ¯ � Hs and dim Hj =kj�x�. If e�0, and e�Hj
� Hj+1 � ¯ � Hs but e�Hj+1 � Hj+2 � ¯ � Hs, then ��x ,e�
=� j�x�. If the system is ergodic, the whole set ��i� is inde-
pendent of x �almost everywhere�. In this case, choosing a
vector e at random in TRx

m one may expect to find ��x ,e�
=�1. From now on the set �� j� will be denoted by �� j�.

The first ways to compute the Lyapunov exponents were
to follow the dynamics of two initially nearby trajectories
and to study the evolution of their distance; a rescaling
mechanism was then added to avoid a possible exponential
overflow of that distance �9�. Later a second way was devel-
oped, in which the dynamics in the tangent space of the
phase space was computed by linearizing the equations of
motion. If ẋ= f�x�, x�Rm, the linear evolution of a tangent
vector w�TRx

m, the tangent space in x, is given by

ẇi�t� = �
k=1

m
� f i

�xk
wk�t�, i = 1,m .

From the theorems mentioned before, there is a base �ei�
in TRx�0�

m , such that for almost all initial conditions the long
time evolution of w is given by a superposition of vectors,
the coefficients of which are exponentials of the Lyapunov
exponents � j,

w�t� = �
j=1

s

a j�t�e�jt,

where s�m, a j 	�i
w�0�
ci�t�ei, and this sum is done over
all ei characterized by the same expansion rate � j. The ma-
trices ci�t� entail a possible time dependence weaker than the
exponential one and the rotation of �ei� generated by the flow
of the dynamics.

Let the phase space be decomposed into the sum of n
subspaces, S1, S2 , . . . ,Sn�n�m�, which are physically inter-
esting for the study of the system �they can also be single
DOFs�. This phase space decomposition will induce an
analogous decomposition of the tangent space in n subspaces
TS1, TS2 , ¯ ,TSn.

A set of coherence angles �CAs� �l, l=1, . . . ,n can be
defined through

cos2 �l = lim
t→�

1

t
�

0

t 
w�l��t��
2


w�t��
2
dt�,

where w�l��t� is the projection of w�t� on TSl. Asymptotically
w�t�→a1�t�exp��1t� and w�l��t�→a1

�l��t�exp��1t�, where a1
�l�

is the projection of a1 on TSl �10�. So we have that

cos2 �l = lim
t→�

1

t
�

0

t 
a1
�l��t��
2


a1�t��
2
dt�,

and each �l represents an average angle between the sub-
space TSl and the maximum expansion subspace. The TSl are
a fixed characteristic of the system; on the other hand, the
maximum expansion subspace depends only on the phase
space representative point and oscillates during the time evo-
lution around an average direction in TRx�t�

m . It follows that
the CAs have a weak dependence on the initial conditions in
the tangent space and in the phase space.

The coherence angles provide a mean to single out those
DOFs which are endowed with a degree of coherence differ-
ent from that of the whole system. DOFs characterized by a
high value of the coherence angle have a high degree of
coherence and may therefore require very long times to reach
equilibrium.

The CAs measure the angular distance between the TSl
associated with the various DOFs and the maximum expan-
sion subspace H1 corresponding to �1 and are well defined
asymptotically. But in the short and medium times, the evo-
lution of a tangent vector and of its projections on the TSl
subspaces depends on its position relative to all the sub-
spaces Hj, corresponding to the whole set of different
Lyapunov exponents. In condensed-matter systems the
Lyapunov spectrum is smooth: the exponents following the
first have values slowly decreasing from the maximum one.
As the chaoticity of a DOF increases with the angular prox-
imity in the tangent space of its associated TSl to a rapidly
expanding subspace, it is clear that one should also consider
the subspaces Hj corresponding to expansion coefficients just
below �1. More generally, one can expect the short and me-
dium time behaviors of a DOF to depend on the angular
distance of its associated TSl from all s subspaces Hj corre-
sponding to Lyapunov exponents, whether expanding or con-
tracting.

Let us call �� jl� these generalized coherence angles; they
completely characterize the time evolution of all subspaces
of the tangent space �11,12�. The tangent space seems to be
structured in such a way that the angles between a generic
tangent vector and the most expanding directions have simi-
lar values, and the same holds for the most contracting ones.
By this we mean that the projection of a tangent vector on a
subspace characterized by a given Lyapunov exponent turns
out to be similar in magnitude to the projection on another
subspace characterized by a Lyapunov exponent similar to
the previous one �13�. Therefore, the chaoticity of a DOF is
determined mainly by the set of angles; its associated TSl
makes with the subspaces labeled by the Lyapunov expo-
nents closely following the first �maximum� one.

In principle, all generalized coherence angles are neces-
sary to completely define a degree of coherence for all
DOFs. However, the computation of n	m terms can become
a heavy task for large systems. In addition to the computa-
tional burden, using the whole set �� jl� would make it im-
possible to take advantage of the synoptic view provided by
a single coherence spectrum, like the one entailing only the
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angles with the most expanding subspace, where the coher-
ence of each DOF is measured by a single number �10�.

There is also problem in measuring precisely the degree
of coherence of the most ordered DOFs when the number n
of physically interesting DOFs becomes very large. One can
define a coherence angle � averaged over all DOFs of the
system, for which the relation cos �=1 /�n holds �10�. The
most coherent DOFs are characterized by angles confined in
a range between � and 
 /2, which becomes narrow when n
becomes large; they are thus difficult to distinguish, even if
they are endowed with very different degrees of coherence.
Moreover, it could be difficult to compare coherence proper-
ties of systems with different numbers of DOFs, as � de-
pends on n. In the following we show how to circumvent
these problems.

III. COHERENCE TIMES

We have looked for a new tool independent of n, physi-
cally meaningful and entailing all the relevant information
on the short and medium time behaviors of the DOFs. This
procedure allows the coherence of each DOF to be measured
by a single number, the coherence time. The natural starting
point is given by the effective expansion coefficients ��l��t�;
they synthesize the effect of all expanding and contracting
directions in the phase space on the time evolution of each
DOF. We define the following time-dependent quantities:

�1�t� =
1

t
ln


w�t�


w�0�


,

and a partial Lyapunov exponent �PLE� for each single DOF
�14�,

��l��t� =
1

t
ln


w�l��t�


w�l��0�


.

��l��t� characterizes the rate of divergence of the lth DOF for
nearby trajectories in the same way as �1�t� does for the total
divergence of the trajectories. From the theorems quoted in
Sec. II, we can conclude that limt→� ��l��t�=limt→� �1�t�
=�1∀ l.

�1�t� and ��l��t� are computed as time averages over short
segments of the trajectory of length �,

�1�t� =
1

N
�
r=1

N
1

�
ln


w�r��


w��r − 1���


and

��l��t� =
1

N
�
r=1

N
1

�
ln


w�l��r��


w�l���r − 1���


,

where t=N�. Let tr=r�; we may interpret

�̃1�tr� =
1

�
ln


w�r��


w��r − 1���


and

�̃�l��tr� =
1

�
ln


w�l��r��


w�l���r − 1���


as the segment-dependent expansion rates of the whole sys-
tem and of the lth DOF, respectively. In the short and me-
dium times, when the vector representing in the tangent
space the distance between near trajectories has just begun

reorienting in the direction of maximum expansion, �̃�l��tr�
may differ substantially from �̃1�tr�. During this time, DOFs
characterized by a higher �lower� coherence than the whole

system should produce �̃�l��tr� smaller �larger� than �̃1�tr� on
most segments. ��l��t� may thus differ substantially from
�1�t� on the short and medium times. The value ��l��t� gives
information about the accumulated exponential rate of ex-
pansion; therefore, it may be—before the relaxation to
�1—lower or higher than �1�t�. This difference and the time
needed to reach the regime where ��l��t��1 characterize
each DOF.

��l��t�→�1 almost anywhere in the tangent space, but the
time t̂ after which ��l��1, that is the time each DOF needs
to reach the asymptotic expansion rate of the whole system,
is difficult to determine, as there is not a neat transition to the
asymptotic behavior �14�. By observing the behavior of
��l��t� vs t, one can understand the approach to relaxation of
each DOF. We gave in Figs. 1 and 2 of Ref. �14� the results
obtained at low and high energies for the normal modes of a
two-dimensional �2D� square lattice of particles interacting
via a Lennard-Jones potential. We reported t��l��t� vs t, so
that the slope of the curves gave ��l��t�. At the highest en-
ergy, where the whole system is in the chaotic regime, all
subspaces behave alike, and the curves corresponding to
��l��t� are similar and near to the global one relative to �1�t�,
an almost straight line with slope �1; still, a small but definite
distance among lines referring to different DOFs is evident.
At the lowest energy this distance is more visible, and one
can observe a differentiated behavior of the DOFs, typical
for a partially ordered dynamics.

This distance is the result of the combined effect of the
accumulated difference between each ��l��t� and �1�t� and of

the time t̂l needed to relax; roughly speaking, �̃�l��t� evolves

to �̃1 up to t̂l, while �̃�l��t�� �̃1 when t� t̂l. The distance is
easily computable, and the precision of this measure in-
creases with increasing averaging times because the distance
between the lines t��l��t� and t�1�t� oscillates around its av-
erage value when t→� �14�.

A hierarchy of coherence among the DOFs can be estab-
lished by computing, during the dynamics, the vertical dis-
tances between each line t��l��t� and the line t�1�t� and aver-
aging on time. The averaged horizontal distances, which we
call time shifts, are then obtained dividing the vertical dis-
tances by the average common slope �1,
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�l� =
1

�1
lim
t→�

1

t
�

0

t

t���1�t�� − ��l��t���dt�

=
1

�1
lim
t→�

1

t
�

0

t �ln

w�t��


w�0�


− ln

w�l��t��


w�l��0�
 �dt�

= −
1

�1
��ln


w�l��t��


w�t��
 � t

− ln

w�l��0�


w�0�
 � .

One has

t�1�t� − t��l��t� = ��
r=1

N

��̃1�tr� − �̃�l��tr��

� ��
r=1

t̂l/�

��̃1�tr� − �̃�l��tr�� .

The integrand in the definition of �l� is therefore finite and
usually different from zero when t→�, which gives a �l�

different from zero. The latter may depend on the initial con-
dition w�0�; one has therefore to average the set ��l�� over
several different initial conditions. We have computed in �14�
the set of �l� for all DOFs, at various energies, and found
negative and positive values. For large enough times, the
expansion rate of the distance for initially close trajectories is
�1; a negative �positive� time shift means that the corre-
sponding DOF reaches a given level of expansion a time �l�

before �after� the whole system, i.e., the DOF is more chaotic
�coherent� than the whole system. The dynamics of many
condensed-matter systems, including the butane molecule, is
determined by a Hamiltonian that can be approximated at
low energy by a perturbed harmonic one. As this kind of
Hamiltonian conveniently describes the Lennard-Jones crys-
tal at low energy, the DOFs of those systems—in particular
of the butane molecule—can be expected to have the kind of
differentiated behavior found in Ref. �14�.

In order to make a physically meaningful comparison
among DOFs in different states of a system, or belonging to
different systems, it is convenient to include the typical time
after which the whole system manifests its chaoticity, i.e., the
so-called Lyapunov time �1

−1. Therefore, we define the coher-
ence time of a single DOF as ̃�l�=�1

−1+�l�. It can be seen as
the time scale over which the single DOF is able to keep its
coherence; it is a physical measure of the time needed by the
single DOF to exhibit a chaotic behavior. Actually, a better
measure of the degree of chaos of the whole system would
be given by the sum of all positive Lyapunov exponents of
its spectrum, �i

�+��i �this sum corresponds to the
Kolmogorov-Sinai entropy� �15�. We will show in Sec. V
that—for the simulations reported in the present work—
adding to �1 all other positive Lyapunov exponents and tak-
ing the inverse of this sum as a measure of the molecule’s
characteristic coherence time, the results do not change sig-
nificantly. Therefore, we keep for simplicity the definition
given above of coherence time for a single DOF. The coher-
ence time of a DOF defines the degree of chaos or order
characterizing its dynamics and is the combined effect of its
proximity to the expanding and contracting directions in the
phase space; but the measure of ̃�l� does not require the

previous determination of those directions. Therefore, the co-
herence times do not depend on the choice of the vectors
used to compute the spectrum of Lyapunov exponents, the
set of orthonormal vectors found in the usual Gram-Schmidt
procedure �which we have used to find the results reported in
Sec. V�, or the set of Lyapunov covalent vectors determined
through the procedure described in �16�.

IV. BUTANE MOLECULE

We have used a united atom model to represent the butane
molecule �C4H10� shown in Fig. 1: the hydrogen atoms are
incorporated in the carbon atoms, giving four equally dressed
point masses m �17,18�. As the mass of the molecule equals
58 amu, each mass point is endowed with a mass of
14.5 amu=24.08	10−24 g. In this model the potential en-
ergy is the sum of three terms: the vibrational energy of the
covalent bonds �stretching�, the vibrational energy of the va-
lence angles �bending�, and the energy associated with the
dihedral torsion. If ri= �ri����=x ,y ,z� are the Cartesian co-
ordinates of the ith atom, the stretching is the variation in
bi=ri+1−ri�i=1,2 ,3�. The bending is the variation in �i,
where cos �i=−bi ·bi+1 /bibi+1.

The stretching energy is represented by a harmonic term:
Vs= 1

2�i�1�bi−b0�2; b0 and bi are the equilibrium distance
and the actual distance between atoms i and i+1, respec-
tively. The bending energy is represented by a sum of qua-
dratic terms of the cosine of the valence angles �: Vb
=�i�2�cos �i−cos �0�2; �0 and �i are, respectively, the equi-
librium angle and the actual angle between atoms i, i+1, and
i+2 �i=1,2�. Let �1 and �2 be the normals to the planes
defined by atoms 1,2,3 and 2,3,4, respectively: �1=b1	b2,
�2=b2	b3; the dihedral angle is defined by cos �=
−��1 / 
�1
� · ��2 / 
�2
�. The potential energy entailed in the di-
hedral angle � is represented as Vd=� j=0

5 aj cosj � �19�.
Vd has an absolute minimum at �=0, Vd=0 �trans-

conformation�, and two relative minima symmetrically lo-
cated at �=2
 /3, Vd=2.926 kJ /mol, as shown in Fig. 2.
This energy corresponds to the cis-conformation. The torsion
potential has two relative maxima at �= �
 /3, where it
reaches the value Vd=12.33 kJ /mol, equivalent to a transi-
tion temperature above 124 K.

The total force acting on each mass point i has been com-
puted by fi=−�i�Vs+Vb+Vd�, and the time evolution of the
system has been simulated by molecular dynamics.

The computation of the explicit form of the forces in Car-
tesian coordinates is quite cumbersome; we report here the

FIG. 1. Model of the butane molecule in the
trans-conformation.
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final results. Let ri= �ri,� ,�=x ,y ,z� be the position of the ith
atom, and bi=ri+1−ri �i=1,2 ,3�. We define

Ai� 	 −
�Vs

�ri�
= �1�bi − b0�

r�i+1�� − ri�

bi
.

The forces acting on the four atoms derived from the
stretching potential Vs have components F1�=A1�, F2�=
−A1�+A2�, F3�=−A2�+A3�, and F4�=−A4�. For the forces
deriving from the bending potential Vb we define

Bi� 	
� cos �i

�ri�
=

1

bi
� r�i+2�� − r�i+1��

bi+1
+ cos �i

r�i+1�� − ri�

bi
� ,

Ci� 	
� cos �i

�r�i+1��
=

1

bi+1
� r�i+1�� − r�i��

bi
+ cos �i

r�i+2�� − r�i+1��

bi+1
� ,

Di 	 −
�Vb

� cos �i
= − �2�cos �i − cos �0� .

These forces then have components F1�=D1B1�, F2�=D1
�−B1�+C1��+D2B2�, F3�=−D1C1�+D2�−B2�+C2��, and
F4�=−D2C2�. In order to compute the torsional forces we
define two vectors:

u =
1

�2
���1

�1
� + ��2

�2
�cos �� ,

v =
1

�1
���2

�2
� + ��1

�1
�cos �� .

Defining

R 	
�Vd

� cos �
= �

i=1

5

iai cosi−1 � ,

the torsional forces on the four atoms are F1=−R�b2	v�,
F2=R��b1+b2�	v−b3	u�, F3=R�−b1	v+ �b2+b3�	u�,
and F4=−R�b2	u�.

We have performed a classical molecular dynamics simu-
lation of a single butane molecule. Most of the results were

obtained at constant total energy. The dynamics at constant
energy has been obtained using the standard Verlet algorithm
�20� to integrate the equations of motion. As we were inter-
ested in measuring and analyzing quantities related to the
chaotic or coherent behavior of the DOFs of the system, we
have chosen to avoid introducing unnecessary external con-
straints, which are likely to influence and modify these prop-
erties �21�. Therefore, we have not constrained the total en-
ergy, the total momentum, or the total angular momentum to
a given value. The accurate numerical integration of the
equations of motion maintained those quantities at their ini-
tial value, which was zero for the total momentum; the total
angular momentum was zero in the simulations used to study
the behavior of the internal variables �Sec. VI�.

We have used a time step h=0.21 fs, which is 1/100 of
the period Ts of the fastest vibration in the system, the
stretching: Ts=2.12	10−2 ps. The precision of the Verlet
algorithm is of O�h4� in the positions and of O�h2� in the
velocities, and in a simulation at constant energy it allows an
energy conservation within 0.01%; moreover, it has the ad-
vantage of being symplectic �22�. The duration of each simu-
lated dynamics was about 100 ns; the length � of the short
segments of the trajectory mentioned in Sec. III was 30 time
steps. The temperatures simulated ranged from 54 to 442 K;
in this range the dihedral angle can undergo transitions be-
tween the trans- and the cis-conformations. We have used in
the following reduced units for length ���� and time �t�� �23�
if not otherwise specified.

V. LYAPUNOV EXPONENTS

In order to estimate the degree of chaos of the butane
molecule, we have computed the maximum Lyapunov expo-
nent �1 at various total energies, corresponding to tempera-
tures ranging from 54 to 442 K. The lowest temperature is
below the energy threshold for the transition of the dihedral
angle between potential wells and can be seen to produce
only narrow oscillations inside the deepest potential well; the
highest temperature is definitely above this threshold. In Fig.
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FIG. 3. Maximum Lyapunov exponent �1 as a function of the
system’s equilibrium temperature.
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FIG. 2. Torsion potential of the dihedral angle in the range
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3 we report the values of �1; as expected, the �1 values
increase with temperature.

The sharp increase in the slope of �1 vs T between T
�150 K and T�180 K can be related to the onset of the
transition between wells of the dihedral potential, which are
not-so-frequent and rapid events, as shown in Figs. 4–6.

The time given by the inverse of the maximum Lyapunov
exponent is reported in Table I for each temperature; this
Lyapunov time is assumed to represent a molecule’s charac-
teristic time for the loss of memory of its initial state, that is,
for the display of a chaotic behavior. This time varies be-
tween 50t� �97 ps� at the lowest temperature and 0.18t� �0.35
ps� at the highest, showing how the onset of conformational
transitions shortens the system’s memory. The range of val-
ues of �1 between the lowest and the highest temperatures
reflects the effect of the Hamiltonian’s anharmonicity in a
more striking way than the deviation from equipartition of

energy; as a matter of fact, the latter—measured by
�= ��K�− �U�� / ��K�+ �U��—increases only from 0.0894 at
T=59 K to 0.0929 at T=442 K. Here �K� and �U� are the
time averaged kinetic and potential energies, respectively.

We have measured the whole Lyapunov spectrum of the
butane molecule at the three highest temperatures given in
Table I, where the contribution of the Lyapunov exponents
following the maximum is expected to be more significant.
The results show the typical symmetrical structure of the
Lyapunov spectrum above and below the zero value due to
the symplectic property of the Hamiltonian. We have
checked at these temperatures the sum rule �i=1

24 �i=0, where
the sum extends over all Lyapunov exponents, and found it
verified within 4	10−3 at T=180 K and 8	10−3 at T
=442 K. If we add to �1 all other positive Lyapunov expo-
nents and take the inverse of this sum as a measure of the
molecule’s characteristic coherence time, the results given in
Table I for the Lyapunov times do not change significantly:
��i

�+��i�−1 are �in reduced units� 1.4 at T=180 K, 0.47 at T
=196 K, and 0.11 at T=442 K.

VI. COHERENCE TIMES OF THE INTERNAL
VARIABLES

We performed simulations aimed at measuring the degree
of coherence of the internal DOFs of the molecule: stretch-
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FIG. 4. Distribution of the dihedral angle at T=147 K; the area
under the curve is normalized to 1 in this and in the two following
figures.
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FIG. 5. Distribution of the dihedral angle at T=180 K.
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FIG. 6. Distribution of the dihedral angle at T=442 K.

TABLE I. Anharmonicity, �1, and Lyapunov time of the mol-
ecule at various temperatures T. �1 and �1

−1 are in reduced units.

T �K� � �%� �1 �1
−1

59 8.94 0.02 50

118 9.01 0.09 11

147 9.04 0.13 7.7

180 9.06 0.67 1.5

196 9.08 0.9 1.1

442 9.29 5.7 0.18
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ings, bendings, and the dihedral angle. These simulations
were at constant total energy, with temperatures T=54, 168,
and 250 K, given by the time average of the kinetic energy;
the total momentum and the total angular momentum were
initially equal to zero, and the integration of the equations of
motion conserved those quantities. We report in Table II the
coherence times ̃c

�l� of the six internal coordinates and the
coherence times ̃v

�l� of their velocities; each value is an av-
erage over four trajectories with different initial conditions in
the tangent space. At the lowest temperature �T=54 K�, the
maximum Lyapunov exponent is �1=4.5	10−3, which cor-
responds to a characteristic Lyapunov time of the molecule
of 222t�, equivalent to 425 ps. The central stretching turns
out to be the most chaotic DOF; actually it entails most of
the chaotic behavior of the whole system, being the only one
to have a coherence time shorter than the Lyapunov time of
the molecule. As a matter of fact, its time shift �−1970t�� is
huge and means an instantaneous onset of a chaotic behav-
ior; this appears in Table II as a zero coherence time. The
other DOFs exhibit a clear coherence hierarchy, the bending
angles being the most coherent ones, followed by the two
external stretchings and the dihedral angle. The central
stretching is also the most chaotic in the velocities subspace,
while the bendings loose here their coherence, being more
chaotic than the whole molecule. The most coherent DOFs in
this subspace are the two external stretchings and the dihe-
dral angle, as reported in Table II.

At the intermediate temperature �T=168 K� the dihedral
angle undergoes transitions between potential wells. The on-
set of these transitions raises the value of �1 by 3 orders of
magnitude to 2.6, which corresponds to a characteristic
Lyapunov time of 0.38t�, equivalent to 0.74 ps; this dramati-
cally shortens the coherence times, which now fall in the
range of few picoseconds. The change in the dynamics of the
dihedral angle is reflected in its coherence time, which turns
out to be zero �actually corresponding to a negative time
shift of −3.1t� in the coordinates’ subspace�, the lowest of all
internal coordinates. As for the other coordinates, the exter-
nal stretchings are now the most coherent, followed by the
bendings; the central stretching is the least coherent. On the
other hand, at this temperature, also the coherence times of
the velocities display a hierarchy but a different one: the

bendings are the most coherent, followed by the dihedral
angle and by the stretchings.

At the highest temperature �T=250 K� the maximum
Lyapunov exponent is �1=3.8, which corresponds to a char-
acteristic time of 0.26t�, equivalent to about 0.5 ps. The fur-
ther decrease in the coherence time is related to the intensi-
fication of transitions of the dihedral angle between
neighboring potential wells, as shown in Figs. 4–6. At this
high temperature the coherence times of almost all coordi-
nates and velocities are in a narrow range near zero, with no
significant distinction among them; the only exception is the
central stretching, which turns out to be more coherent than
all other DOFs at this high temperature.

The values �1 given in this section for the two highest
temperatures—from which the molecule’s Lyapunov times
given in Table II are derived—are larger than the values that
can be derived from the graph of Fig. 3 at the respective
temperatures. The former have been computed in a simula-
tion with zero total angular momentum of the molecule,
while the latter have been computed with a total angular
momentum that was constant but different from zero. The
fraction of kinetic energy absorbed by the rotation was be-
tween 0.15 and 0.20, thus lowering the amount of kinetic
energy effective in dynamically changing the shape of the
molecule. If one translates this lower effective kinetic energy
in a lower effective temperature, the two sets of �1 values
become more similar. So, for example, the temperature at
which the transitions of the dihedral angles set in—when the
angular momentum is zero—turns out to be 120 K; this tem-
perature practically coincides with the one found for this
dynamical transition in the rotating molecule �147 K, as
shown in Fig. 3�, taking into account the fraction �0.16� of
rotational kinetic energy in the latter case. Nevertheless, dif-
ferences between the two sets remain after the correction of
the nominal temperature of the rotating molecule. This point
is discussed further in Sec. IX.

VII. PRINCIPAL COMPONENT ANALYSIS

We analyzed the dynamics of the butane molecule
through the set of collective variables defined by means of
the linear transformation of the vector r into q=OT�r− �r��,
where O is the matrix the columns of which are the eigen-
vectors of the covariance matrix Cr= ��r− �r���r− �r��T�; �·�
is a time average. OTCrO is a diagonal matrix, the elements
of which are the eigenvalues corresponding to those eigen-
vectors. The time evolution of vector q displays the essential
dynamics of the molecule: it has been shown in the simula-
tion of proteins that the components of q along few eigen-
vectors, corresponding to the largest eigenvalues of Cr, ac-
count for most of the total fluctuation �24,25�.

The same matrix O can be used to compute the velocities
associated with q through the transformation ṙ= �ṙi� into q̇
=OTṙ. We made a different choice, namely, we analyzed the
velocity component of the dynamics by computing a covari-
ance matrix for the velocities subspace: Cv= ��v− �v���v
− �v��T�; we then projected the time evolution of the Carte-
sian velocities on the eigenvectors of this matrix, obtaining
thus the collective momenta � �in this molecule all atoms

TABLE II. �1
−1 and all coherence times are given in reduced

units. ̃c is the coherence time relative to each DOF; ̃v is the co-
herence time relative to its velocity. The total energy of the mol-
ecule is constant.

T=54 K T=168 K T=250 K

�1
−1=222 �1

−1=0.38 �1
−1=0.26

̃c
�l� ̃v

�l� ̃c
�l� ̃v

�l� ̃c
�l� ̃v

�l�

cos �1 1974 194 1.01 5.69 0 0

cos �2 1716 20 0.98 4.85 0.02 0.08

b1 827 581 3.52 1.90 0 0

b2 0 0 0.45 1.88 0.45 0.65

b3 644 520 4.26 2.51 0 0

� 361 515 0 3.46 0.02 0
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have the same mass; therefore, the collective momenta are
simply proportional to the collective velocities�. The set of
the so-called “essential” variables q, � projects the dynamic
evolution of the system onto a frame of reference suitable for
evidencing a possible hierarchy in the amplitude of their
fluctuations.

We report in Fig. 7 the eigenvalues �i of the positions’
covariance matrix at temperatures T=54, 107, and 394 K,
and in Fig. 8 the eigenvalues �i of the velocities’ covariance
matrix at the same temperatures. A nonzero angular momen-
tum, albeit small, would produce rotations of the whole mol-
ecule giving to the atomic coordinates a fluctuation which
would overshadow the amplitude of their variation in the
frame of reference of the molecule; therefore, we performed
these simulations by setting the total angular momentum to
zero �these simulations were not used to compute the coher-
ence times�. The eigenvalues of the positions’ covariance
matrix show a sharp increase at the highest temperature, par-
allel to the one already observed in Fig. 3; as mentioned
before, this increase is due to the activation of the transitions
of the dihedral angle between nearby potential wells. An-
other relevant feature of these eigenvalues is that, at all simu-
lated temperatures, the first eigenvalue is significantly larger
�by a factor of about 4� than the following ones. As for the
velocities’ covariance matrix, at the two temperatures below
the transition region the eigenvalues are split in two groups:
the three highest eigenvalues are much larger �by a factor

larger than 5� than the others; on the other hand at the highest
temperature, where the dihedral angle undergoes transitions,
the eigenvalues show a gradual decrease, without the gap
present at the lower temperatures. Figures 7 and 8 show that
even for a small molecule such as butane the PCA is able to
extract the essential variables, both in the collective coordi-
nates’ and in the collective velocities’ subspaces. With the
exception of the velocities at the highest temperature, more
than 90% of the total fluctuation of the molecule’s positions
and velocities is entailed in the first few variables. This result
is similar to what is usually found in large biomolecules, for
which the essential dynamics method was originally devel-
oped.

VIII. COHERENCE TIMES OF THE PRINCIPAL
COMPONENTS

We have analyzed the behavior of subspaces q�l� or 
�l�, to
which we associate subspaces �q�l� and �
�l� in the tangent
space. We have looked for a possible correspondence be-
tween the amplitude of the eigenvalues of these two covari-
ance matrices and the coherence in the corresponding essen-
tial subspaces. To this purpose, we have computed the
following quantities.

�1
q�t�, the estimated maximum Lyapunov exponent of the

12-dimensional �12D� subspace spanned by the set �q�l��,
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FIG. 7. Eigenvalues �i of the coordinates’ covariance matrix Cr.
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�1
q�t� = lim


�q�0�
→0

1

t
ln


�q�t�


�q�0�


.

In analogous way we have computed �1
��t�, the estimated

maximum Lyapunov exponent of the 12D subspace spanned
by the set �
�l��,

�1
��t� = lim


���0�
→0

1

t
ln


���t�


���0�


.

Asymptotically one has limt→� �1
q�t�=�1 and limt→� �1

��t�
=�1, where �1 is the maximum Lyapunov exponent of the
whole system �because of topological invariance, this expo-
nent may be equally computed in the Cartesian or in the
essential space�. We have verified these equalities as a check
that the length of our simulation was sufficient to reach
asymptotic values for the Lyapunov exponents.

The PLEs, which characterize the rate of divergence of
the projection of two initially near trajectories on a single
subspace, have been computed through

�q
�l��t� = lim


�q�l��0�
→0

1

t
ln


�q�l��t�


�q�l��0�


and

�

�l��t� = lim


�
�l��0�
→0

1

t
ln


�
�l��t�


�
�l��0�


.

Even though limt→� �q
�l��t�=limt→� �


�l��t�=�1∀ l, there
are differences at finite times within each of the two sets
��q

�l�� and ��

�l��. The compounded effect of these differences

is just what generates the time shifts among the various
DOFs, as explained in �14� and in Sec. III. Thus we compute
the time shifts through

q
�l� =

1

�1
lim
t→�

1

t
�

0

t

t���1
q�t�� − �q

�l��t���dt�,



�l� =

1

�1
lim
t→�

1

t
�

0

t

t���1
��t�� − �


�l��t���dt�.

As explained in Sec. III, the computation of the coherence
times requires a measure of the PLEs relative to the various
DOFs. As an example, we report in Figs. 9 and 10 the time
evolution of selected PLEs, which show the kind of short
time behavior that generates the different time shifts. In the
first figure, relative to the positions subspace, the PLE rela-
tive to the ninth collective coordinate �corresponding to the
ninth eigenvalue of the positions’ covariance matrix� has a
short time evolution which is below that of the whole posi-
tions’ subsystem, hinting at a more coherent dynamics; on
the other hand, the third collective coordinate has an oppo-
site behavior, hinting at a more chaotic dynamics. For longer
times both PLEs approach, as expected, the maximum
Lyapunov exponent of the subsystem �which approaches as-
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FIG. 8. Eigenvalues �i of the velocities’ covariance matrix Cv.
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ymptotically the maximum Lyapunov exponent of the whole
system�. These different behaviors are reflected in the differ-
ent coherence times, as shown in Table III. In the second
figure a similar difference is reported for the PLEs computed
in the velocities’ subspace. Here the eighth collective vari-
able is more chaotic than the subsystem, while the first co-
ordinate is more coherent; the coherence times relative to
this subspace are also reported in Table III. It is interesting to
note the different behavior of a given coordinate in the two
subspaces, as an example, at T=180 K, the ninth collective
coordinate is the second most coherent in the positions’ sub-
space; but the same coordinate is among the most chaotic in
the velocities’ subspace. This is just an example of a rich
variety of behaviors, which is reflected in a variety of coher-
ence times, as shown in Table III.

All data reported in this table are taken from dynamical
trajectories of length 5	104t�, which were long enough to
produce stabilized values; each datum is an average over
four trajectories with different initial conditions in the tan-

gent space. All coherence times should be compared to �1
−1 at

the corresponding temperature; we take the latter, as men-
tioned before, as a measure of the coherence time of the
whole molecule. Some regularities are evident: the first po-
sitional coordinate, corresponding to the maximum eigen-
value of the covariance matrix, is the most coherent DOF at
the four highest simulated temperatures. A similar feature is
more evident in the coherence times relative to the veloci-
ties’ subspace, where the first variable is always the most
coherent; moreover, at all temperatures but one �T=180 K�,
the second variable is also the second in coherence.

IX. DISCUSSION

The results of the present work show that some dynamical
variables may need very long times �of the order of some ns�
to display their chaotic behavior. In order to make use of the
theoretical framework resumed in Sec. II, which applies to
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TABLE III. Coherence times for the collective coordinates and velocities derived from a PCA at various temperatures. �1
−1 and all

coherence times are given in reduced units. The collective variables are listed in order of decreasing magnitude of the corresponding
eigenvalue of the covariance matrix.

T=59 K T=118 K T=147 K T=180 K T=196 K T=442 K

�1
−1=50 �1

−1=11 �1
−1=7.7 �1

−1=1.5 �1
−1=1.1 �1

−1=0.18

l ̃q
�l� ̃


�l� ̃q
�l� ̃


�l� ̃q
�l� ̃


�l� ̃q
�l� ̃


�l� ̃q
�l� ̃


�l� ̃q
�l� ̃


�l�

1 88 224 18 39 20 28 3.5 4.6 2.4 3.0 0.3 0.3

2 120 156 22 29 14 15 2.7 1.6 1.7 2.6 0.2 0.4

3 0 46 5 7 2.1 14 1.1 2.6 0.8 1.2 0.2 0

4 59 80 0 23 3.1 7.2 2.0 2.3 1.5 2.2 0.3 0.1

5 11 30 10 0 8.3 2.1 0 1.6 0.8 0.5 0.1 0

6 24 69 11 0 16 0 2.7 0 1.4 0 0.2 0.2

7 97 8 25 4 11 3.6 1.2 0.3 0.9 0 0.1 0.3

8 146 9 28 0 15 0 1.9 0 1.9 0 0.1 0.1

9 119 59 33 9 12 5.7 2.7 0 1.2 0 0.2 0.2
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ergodic systems, we had to make sure that our simulations
were long enough to allow all relevant dynamical variables
to relax to equilibrium. This has been achieved by extending
each of our simulations to about 100 ns, which is 25 times
longer than the largest coherence time found in our computer
experiments.

We distinguished the various simulations performed at
constant total energy by their temperature. We could have
rather used the time averaged total kinetic energy �K�, as a
thermodynamic parameter such as the temperature has lim-
ited meaning for a small isolated system such as the butane
molecule. Nevertheless, we chose the temperature as it gives
a more intuitive characterization of the physical state of a
real system. But the relation between kinetic energy and tem-
perature, as noticed at the end of Sec. VI, must be considered
with care when dealing with a small system such as the bu-
tane molecule. The rotation of the molecule affects its dy-
namical regime, and the interplay of rotational and internal
translational kinetic energy is not simple.

In Fig. 11 we report �1 for the rotating and the nonrotating
�zero total angular momentum� molecules. In order to make
a direct comparison of the two sets of data, the temperature
of the rotating molecule has been computed—only for this
figure—by averaging the internal kinetic energy, that is, the
total kinetic energy minus the rotational kinetic energy.
When the temperature of the rotating molecule is lowered by
the amount corresponding to the rotational kinetic energy,
the onset of the dihedral angle’s transition takes place at
similar temperatures �120–125 K� in both cases. But below
and above that transition region the maximum Lyapunov ex-
ponent turns out to be different. At lower temperatures �1 is
very small in both cases, but the rotating molecule exhibits a
Lyapunov exponent that can be almost 1 order of magnitude
higher �9.0	10−2 versus 9.3	10−3 in the 100–110 K re-
gion�, hinting at a possible role of inertial forces �Coriolis
and centrifugal� in enhancing chaos. On the other hand, at
higher temperatures the nonrotating molecule produces a �1
that exceeds that of the rotating molecule in a broad tempera-

ture range. This difference diminishes for temperatures
above 170 K and eventually vanishes around 370 K �all tem-
peratures in this paragraph are internal�. A comparison of the
distributions of the dihedral angle near T=170 K, where the
difference in �1 between the two cases reaches its maximum,
shows that the nonrotating molecule spends a significant
amount of time in the regions around �= �
 /3, where the
potential has two relative maxima and the highest anharmo-
nicity �see Fig. 2�. On the other hand, the distribution of
gamma for the rotating molecule is very similar to the one
shown in Fig. 5, with almost no time spent in that highly
anharmonic region. While the different dynamical behavior
accounts for the different degree of chaos, the origin of this
behavior deserves further investigation.

The coherence time ̃�l� qualifies the dynamical behavior
of a degree of freedom and shows the time after which it
becomes chaotic. This time is related to the angular distance
of the tangent subspace corresponding to that DOF from all
expanding directions foreseen by the Oseledec theorem,
namely the directions characterized by positive Lyapunov
exponents: the narrower the angular distance from the direc-
tions corresponding to the highest Lyapunov exponents, the
shorter the coherence time. Some DOFs are characterized by
a degree of chaos that exceeds that of the whole system,
and—at all temperatures reported in this paper—the absolute
value of their negative time shift may be larger than the
Lyapunov time �1

−1. For these DOFs the coherence time
would be negative; because of the physical content we attach
to this parameter, its negative values have been replaced by
zeros in Tables II and III, meaning an instantaneous onset of
a chaotic behavior.

̃�l� summarizes, in one single number, the effect of all
generalized coherence angles introduced previously �11,12�
to measure the coherence of a single DOF. In order to com-
pute it correctly, one should add the time shift characteristic
of the DOF to the time characterizing the coherence of the
whole system, that is, the inverse of the Kolmogorov-Sinai
entropy �i

�+��i, which takes into account the effect of all
expanding directions in the phase space �15�. For simplicity,
as mentioned at the end of Sec. III, we have summed instead
the time shifts to the Lyapunov time �1

−1, as the computation
of the whole Lyapunov spectrum at low temperature requires
very long trajectories; this approximation does not change
significantly the coherence times reported in Tables II and
III. This has been checked at the highest temperatures, where
the effect of the expanding directions other than the first one
is expected to be more significant; on the other hand, at these
temperatures, the whole Lyapunov spectrum can be com-
puted on relatively short trajectories.

In a previous work done on a thermalized butane mol-
ecule, the coherence of the molecule’s DOFs was measured
by computing coherence angles and generalized coherence
angles for the collective variables xi= �qi ,
i�, i=1, . . . ,9, de-
fined through the essential variables introduced in Sec. VII
�12�. In order to compare the coherence times computed in
this paper with the coherence angles reported in �12�, we can
observe that the latter are determined mainly by the least
coherent variable in each pair �qi ,
i�, as this variable plays
the major role in increasing the distance between the projec-
tions on the �qi ,
i� plane of two initially near trajectories.
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FIG. 11. Maximum Lyapunov exponent �1 as a function of the
system’s temperature corresponding to the internal kinetic energy. *
rotating molecule; � nonrotating molecule.
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Therefore, a comparison can be done between the coherence
angle of a DOF and the shortest between its coherence times
̃q

�l� and ̃

�l�. The data obtained at T=140 K in �12� can be

compared with the data at T=147 K given in Table III. For
the first four variables the coherence times to be compared
with the coherence angles are the ̃q

�l�, for the remaining vari-
ables the ̃


�l�. Notwithstanding the different conditions of the
two simulations—the molecule is isolated here and thermal-
ized in �12�—the two measures of coherence identify the
same set of essential variables as the most coherent and in
the same order. In Fig. 2 of Ref. �12� the largest coherence
angles �corresponding to a higher coherence� are—in de-
creasing order—the first, the second, the fourth, and the
third. This is the same hierarchy found in Table III at T
=147 K, if one neglects the collective variables beyond the
fourth �they correspond to eigenvalues of the coordinates’
covariance matrix that are almost zero �see Fig. 7��. The
introduction of a thermal bath does not seem thus to alter
significantly the overall qualitative pattern of the essential
dynamics.

X. CONCLUSION

The computation of coherence times of collective vari-
ables, which was the main objective of this work, has been
performed for two sets of collective variables, namely, the
internal coordinates �stretchings, bendings, and dihedral
angle� and the variables produced by a principal component
analysis of the Cartesian coordinates �essential variables�.
The simulation has been done on a temperature range large
enough to encompass distinct dynamical patterns of the mol-
ecule: from weakly chaotic to strongly chaotic. In the first
low temperature regime all atoms move in the neighborhood
of the bottom of a multidimensional potential well; in the
second high temperature regime large spatial movements
take place due to transitions of the dihedral angle between
near potential wells.

A first result of our simulation is the sharp change in
Lyapunov times as the temperature is raised above the region
�between 150 and 170 K� where transitions of the dihedral
angle start taking place. Below that transition the molecule
as a whole is weakly chaotic, with a characteristic �1 varying
between 0.02 and 0.13 for temperatures from 59 to 147 K
�see Table I�. These values of �1 correspond to Lyapunov
times of the whole system varying between 97 and 15 ps. As
soon as the conformational transitions begin, just above 150
K, the Lyapunov time drops abruptly below 3 ps, a clear sign
of the increase in chaotic behavior.

A second result is the strong difference in coherence times
between the two sets of collective variables below the tran-
sition region. The internal variables are characterized by co-
herence times that can reach thousands of picoseconds �see
Table II� at the lowest simulated temperature, 1 order of
magnitude higher than the essential variables at a similar
temperature. This implies a warning regarding the use of
computer experiments to measure statistical properties of
molecules, as mentioned in Ref. �11�. In order to assume an
equivalence between time averages performed during the

computer experiment and ensemble averages, the time of the
computer simulation should exceed by at least 1 order of
magnitude the coherence time characterizing the most coher-
ent DOF relevant to the experiment. Therefore, in planning a
computer simulation to analyze low temperature properties
of a molecule that depend on internal variables, one should
be aware of the very long coherence times reported in Table
III. This should hold also for macromolecules that entail hun-
dreds or thousands of internal variables, as one would not
expect the coherence times of stretchings and bendings to be
very different from those found in the butane molecule. On
the other hand, the dynamics of a dihedral angle in a macro-
molecule may have a different character than the one found
in the present simulation, as its transitions would imply ex-
tended movements of large segments of the molecule.

A third result is the differences among variables of the
same set and between coordinates and velocities. The inter-
nal DOFs exhibit below the transition region a clear hierar-
chy of coherence: looking at the coordinates subspace, the
two bendings are the most coherent, followed by the external
stretchings, then by the dihedral angle, and by the central
stretching. Looking at the velocities subspace one also finds
a clear coherence hierarchy but a different one: the two ex-
ternal stretchings are the most coherent, followed by the di-
hedral angle; the two bendings are more chaotic than the
system, and the central stretching is the most chaotic of all
also in this subspace. These large differences among DOFs
reflect the prediction of Nekhoroshev’s theorem �3�, namely,
that in a near integrable system different DOFs may exhibit a
chaotic behavior on different time scales. As a matter of fact,
at low temperature all internal DOFs are near the bottom of
the respective potential well, and the molecule’s dynamics is
very regular. As soon as the temperature is raised above the
transition region �see Table II, at T=168 K�, the differences
among the various coherence times become less relevant,
even though the dihedral angle is now clearly the most cha-
otic in the coordinates subspace, and the two external
stretchings are the most coherent; in the velocities subspace
the two bendings are the most coherent, followed by the
dihedral angle. The three stretchings are less coherent, but
still more coherent than the whole system, the chaoticity of
the latter being mainly determined by the behavior of the
dihedral coordinate. At still higher temperature �T=250 K�
all DOFs have become similarly chaotic, in both subspaces,
with the exception of the central stretching, which is now the
most coherent DOF.

The last result regards the collective variables derived
from the principal component analysis. Here too one finds a
significant reduction in the coherence times when the tem-
perature is raised into and above the transition region of the
dihedral angle. Looking in the coordinate subspace one does
not see a clear distinction among them below the transition
region. Once the transitions of the dihedral angle set in, the
first coordinate �which is the projection on the eigenvector
corresponding to the largest eigenvalue of the covariance
matrix� becomes the most coherent in all cases. A clear dis-
tinction among variables is found in the velocities subspace:
here the first two variables turn out to be more coherent than
the remaining ones in the whole temperature range �with
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only one exception for the second velocity�. The difference is
very significant at the lowest temperature �see Table III� and
is present—albeit on a lesser level—even at temperatures
above the transition region. This persistence of the largest
fluctuations of the collective velocities seems to deserve fur-
ther study, especially in larger molecules which may present
a variety of extended conformational transitions.
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